Synthesis and Thermolysis of the 2,3-dihydro- 1 H -pyrole-2,3-diones, Pseudopericyclic Reactions of Formyl(N-phenylimidoyl)ketene: Experimental Data and PM3 Calculations.
Emin Sarıpınar* and Süleyman Karataş
Department of Chemistry, Arts and Sciences Faculty, Erciyes University, 38039 Kayseri- Turkey Received July 14, 2004

Abstract

The reactions of the 2,3-dihydro- $1 H$-furan-2,3-dione $\mathbf{1}$ with Schiff bases $\mathbf{2 a - f}$ at $60-70^{\circ} \mathrm{C}$ furnish the corresponding 2,3-dihydro- 1 H -pyrole-2,3-diones $\mathbf{3 a - f}$. The heating of $\mathbf{3 a - d}$ afforded the corresponding 4methoxybenzoyl(N -arylimidoyl)ketenes 4a-d as intermediates which undergo a very facile cyclization to quinoline-4-ones 5a-d. According to our PM3 calculations, fragmentation of 4-formyl-2,3-dihydro-1 H -pyrole-2,3-dione and 1,4-cyclization of formyl(N-phenylimidoyl)ketene IN1 to azetin-2-one IN2 and oxetone IN3 are pseudopericyclic reactions with two orbital connections, proceed via planar transition structures. Due to to the possibility of syn and anti conformations of the imine phenyl, there are eight $\boldsymbol{E} / \boldsymbol{Z}$-isomers of IN1. In addition, we have also calculated reaction mechanism of formation of quinoline-4-ones by the PM3 method.

J. Heterocyclic Chem., 42, 787 (2005).

Introduction.

The oxa-1,3-diene moiety in 4-acyl substituted heterocylic 2,3-diones, e.g., 2,3-dihydro- $1 H$-furan-2,3-diones or 2,3-dihydro- 1 H -pyrole-2,3-diones add various isocyanides [1], isocyanates [2], carbodiimides [3], ketenimines [4], diphenylketene [5], imines [6], and alkenes [7], via [2+2], $[4+1]$, or $[4+2]$ cycloaddition processes affording novel mono- and bicyclic systems. The primary formed cycloadducts are not stable and undergo unusual furandione rearrangements, made evident by ${ }^{17} \mathrm{O}$-labeling experiments [8]. The effect of substitiuent on the site selectivity $(\mathrm{C}=\mathrm{C}$ vs $\mathrm{C}=\mathrm{N})$ in the $[4+2]$ cycloaddition between ketene imines with heterodienes (acrolienes or 4-acyl-2,3-dihydro- $1 H$-furan-2,3-diones) was treated by semiempirical molecular orbital AM1, density functional calculations using Becke's three-parameter hybrid (B3LYP/6-31G*) and ab initio method [9]. N-Phenylimino-2,3-dihydro-1H-furan-2,3-diones, obtainable e.g. by reactions of 4-acyl-2,3-dihydro-1H-furan-2,3diones with tosylsulfinylamines or arylalkylcarbodiimides or imines, thermally rearrange to 4 -acyl-2,3-dihydro- 1 H -pyrole-2,3-diones [3a,6b,8b]. Semiempirical molecular orbital calculations were used to rationalize this behavior [10]. Thermal decarbonylation of 4-acyl-2,3-dihydro- 1 H -pyrole-2,3-diones leads to the formation of highly reactive acyl(N-arylimidoyl)ketenes. The acyl(N-arylimidoyl)ketenes cyclize very easily to quinolones [11]. Imidoylketenes are also generated by flash vacuum thermolysis of Meldrum's acid [11b,g,h], triazole derivatives [11e,f,g] and the elimination of alcohols from enamine ester [12]. These reactions proceed readily at temperatures ranging from 160 to $185^{\circ} \mathrm{C}$ in static systems or above $300^{\circ} \mathrm{C}$ under fvp conditions [11b,d,e]. Imidoylketenes are closely related to formylketene; the substituents in both possess a π-bond in conjugation with the ketene as well as an in-plane lone pair. Although substituted imidoylketenes have been less
widely studied than α-oxoketenes [13], they undergo a rich variety of reactions.

In this paper, the synthesis and characterization of the 2,3-dihydro- $1 H$-pyrole-2,3-diones derivatives 3a-f obtained from the reactions between various imine derivatives $\mathbf{2 a}$-f and 2,3-dihydro- 1 H -furan-2,3-diones $\mathbf{1}$ are presented, our findings during the course of synthesizing 3ad, too, as well as further investigations of its thermal decomposition and cyclization to quinolones 5a-d at high temperatures. To study the mechanism of the reaction all calculations were carried out by means of semiempirical PM3 method [14] with full geometry optimisation for reactants, products and intermediates. The PM3 calculations were carried out using the SPARTAN program package [15]. Transition structures have been located using the linear synchronous transition method contained within Spartan. Vibrational mode analyses were systematically carried out to confirm that on a potential energy surface all optimized geometries correspond to a local minimum that has no imaginary frequency mode or a saddle point that has only one imaginary frequency mode. Model compounds with aryl and phenyl groups substituted by hydrogen atoms were used in the theoretical calculations. The results of the calculations (the formation entalpies $\Delta \mathrm{H}_{\mathrm{f}}$, in kcalmol ${ }^{-1}$; dipole moments μ, in debye; the highest and lowest molecular orbital energies $\mathrm{E}_{\mathrm{HOMO}}$ and $\mathrm{E}_{\mathrm{LUMO}}$, in eV and lowest or imaginary frequencies, in cm^{-1}) are given in Table 1.

Results and Discussion.
Treatment of the yellow 4-(-4-methoxybenzoyl)-5-(-4-methoxyphenyl)-2,3-dihydro-2,3-furandione $\mathbf{1}$ with Schiff bases 2a-f at $60-70{ }^{\circ} \mathrm{C}$ furnishes the corresponding red coloured 2,3-dihydro-1H-pyrole-2,3-diones 3a-f. The reaction equation is shown in Scheme 1. The structures of 3a-f were confirmed by elemental analysis, IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$

Table 1
Relative energies, dipole moments, HOMO and LUMO orbital energies and imaginary frequencies for the reactants \mathbf{R}, transition states TS, intermediates IN and products \mathbf{P}.

Compounds	$\begin{aligned} & \Delta \mathbf{H}_{\text {rel }} \\ & \text { kcalmol }^{-1} \end{aligned}$	μ Debye	$\begin{aligned} & \mathbf{E}_{\text {HOMO }} \\ & \mathbf{e V} \end{aligned}$	$\begin{aligned} & \mathbf{E}_{\text {LUMO }} \\ & \mathbf{e V} \end{aligned}$	$V \mathrm{~cm}^{-1}$
R1	-43,30	3.87	-10.56	-1.42	49.83
CO	-15.91	0.18	-13.03	1.00	2306.00
TS1	-13.88	0.80	-9.12	-0.46	365.25i
IN1-ZZ ${ }_{(\text {anti) }}$	0	2.08	-9.30	-0.31	34.09
$\mathbf{I N 1 - E Z _ { (a n t i) }}$	2.31	2.17	-9.19	-0.48	31.82
IN1-ZZ ${ }_{\text {(syn) }}$	2,62	0.86	-9.25	-0.56	30.54
IN1-ZE ${ }_{(a n t i)}$	3,29	3.53	-9.30	-0.31	33.19
IN1-ZE ${ }_{\text {(syn) }}$	3.76	1.11	-9.21	-0.56	33.57
IN1-EZ ${ }_{(s y n)}$	5.43	3.72	-9.16	-0.74	27.39
IN1-EE ${ }_{\text {(syn) }}$	9.75	3.92	-8.88	-0.61	$49.88 i$
IN1-EE (anti)	11,53	3.58	-8.72	-0.73	$27.46 i$
TS2	20.25	4.76	-8.60	-1.01	340.93i
IN2 ${ }_{\text {(pyramidal }}$)	15.74	4.75	-9.05	-1.12	44.32
IN2 ${ }_{\text {(planar }}$)	17.75	4.95	-8.74	-1.09	161.41i
TS3	34.94	3.68	-8.96	-0.82	519.11i
IN3	33.51	4.48	-9.27	-0.97	36.92
TS4	27.42	4.09	-9.25	-0.57	835.56i
IN4	2.00	4.08	-9.48	-1.74	48.20
TS5	34.09	4.09	-9.54	-1.67	1600.44i
P1	-28.22	5.64	-8.93	-0.73	41.88
P2	-26.97	5.13	-9.35	-1.12	57.13
P3	-31.26	0.69	-9.20	-1.08	83.37

nmr data. Product 3a was obtained by reacting 1 with N benzylidene aniline 2a in 83% yield. In the ir spectra of compound 3a, the $\mathrm{C}=\mathrm{O}$ absorption bands were found at about 1750,1710 and $1640 \mathrm{~cm}^{-1}$, typical of pyrrole-2,3diones [3a]. The basic structure of $\mathbf{3 a}$ is strongly supported by ${ }^{13} \mathrm{C} \mathrm{nmr}$ found at $187.79(\mathrm{t}, j=3.7 \mathrm{~Hz}, \mathrm{ArCO})$, 179.28 ($\mathrm{s}, \mathrm{C}_{3}=\mathrm{O}$), $162.30\left(\mathrm{~s}, \mathrm{C}_{2}=\mathrm{O}\right), 172.02(\mathrm{~s}, \mathrm{C}-5)$, $113.91(\mathrm{~s}, \mathrm{C}-4), 55.85\left(\mathrm{OCH}_{3}\right)$ and $55.68 \mathrm{ppm}\left(\mathrm{OCH}_{3}\right) .{ }^{1} \mathrm{H}$ nmr signals were found at $\delta=7.97-6.74(\mathrm{~m}, \mathrm{Ar}-\mathrm{H})$ and $\delta=$
3.84, 3.69 (two s, $2 \mathrm{OCH}_{3}$) ppm. The reaction of 1 with N, N^{\prime}-bis(benzylidene)ethane-1,2-diamine 2e and N, N^{\prime} -bis(benzylidene)benzene-1,4-diamine $2 f$ at $60{ }^{\circ} \mathrm{C}$ furnishes the corresponding red coloured 1,2-bis[4-(4-methoxybenzoyl)-5-(4-methoxyphenyl)-2,3-dihydro-1 H -pyrrole-2,3-dione-1yl]ethane 3 e and 1,4 -bis[4-(4-methoxybenzoyl)-5-(4-methoxyphenyl)-2,3-dihydro-1 H -pyrrole-2,3-dione-1-yl]benzene $\mathbf{3 f}$, respectively (see Experimental). The reaction equations are shown in Scheme 1.

The heating of 2,3-dihydro- 1 H -pyrole-2,3-diones 3a-d under thermolytic conditions afforded the corresponding 1 H -quinolin-4-one derivatives $\mathbf{5 a}$-d in moderate to acceptable yields (40-52 \%), obviously obtained as a result of thermolysis of the primary formed 4-methoxybenzoyl(N arylimidoyl)ketenes 4a-d generated immediately undergoes a 6π electrocyclic ring closure to afford the quinoline derivative 5 during warm-up. The reaction equation is shown in Scheme 2. This case is well known from other N -aryl-imidoylketenes [2c], irrespective from which precursor they were generated and independent of the thermolytic or pyrolytic reaction conditions employed [11a]. In the ir spectra of compound $\mathbf{5 a}$, the $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ absorption bands were found to be at about 3360, 1670, and $1630 \mathrm{~cm}^{-1}$, respectively (see Experimental). ${ }^{1} \mathrm{H} \mathrm{nmr}$ signals about 5a were found at $\delta=12.01$ (s, NH or OH), 8.14-6.94 (m, Ar-H) and $\delta=3.81,3.76$ (two s, $2 \mathrm{xOCH}_{3}$) ppm . In particular from the ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectrum of 5a, important structural information can be obtained. δ Values of 195.96 and 176.84 ppm for the carbon atoms at ArCO and C-4 are in good accordance with those of very close analogues having identical 1 H -quinolin-4-one ring systems [2b,c,3a]. Elemental analysis data and more information about the 5a-d spectra were given in the Experimental section.

Scheme 1

The reaction mechanism for selected model structures, formation of formyl(N-phenylimidoyl)ketene IN1, its conformational structures and N -phenylacylazetion IN2 and N-phenylimodyloxetone IN3 equilibrium have been resulted by PM3 calculations. A comprehensive theoretical study of the electrocyclization of $\mathbf{I N 1}-\mathrm{ZZ}_{(\text {anti })}$ was conducted. The study included a conformational analyis of the reactants, locating transition structures and optimizing closed products. The spatial dispositions of atoms for the reactant \mathbf{R}, intermediates $\mathbf{I N}$, transition states $\mathbf{T S}$ and products \mathbf{P} are shown in Figures 1-4. To ease the consideration of changes in the systems, the same numbering of atoms is kept for reactants, transition states, intermediate and final products of the reactions.
Thermolysis of R1 leads to the formation of IN1 as an intermediate (see Figure 1). As seen from Table 1, the molecule CO disconnection is realized through a transitional state TS1 with the value of $\Delta \mathrm{H}_{\text {rel }}$ equal to -13.88 $\mathrm{kcal} . \mathrm{mol}^{-1}$. The characteristic structural variations for the reacting molecules are given in the Table 2. The calculated transition structure TS1 for the decarbonylation of $\mathbf{R 1}$ is shown in Figure 1. The TS1 is formed when the atom C2 moves to the distance of 2.099 and $2.475 \AA$ from the atoms N1 and C3, respectively. TS1 is an asynchronous transition structure and the reaction is concerted. The C2-C3 bond breaking to a greater degree in TS1, rather than the amide $\mathrm{N} 1-\mathrm{C} 2$ bond; because amides are stabilized and α-dicarboyl compounds are destabilized. Because of unsaturated carbonyl structure of pyrrole-2,3dion, nitrogen gives its lone pair easily to C 5 rather then to C2. Bond orders of C5-N1, N1-C2 and C2-C3 at the R1 are $1.145,0.958$ and 0.829 , respectively. However, the nearly linear O7-C3-C4 geometry (168.28°) suggests that it is more appropriate to consider the reverse reaction, the interaction of CO with formyl $(N$-phenylimidoyl)ketene, in which donation of the CO lone pair to the in-plane ketene LUMO is the dominant interaction, and leads to the nearly linear geometry.

In a recent series of publications, Birney at al. has reported a number of examples for thermal pseudopericyclic reactions that include cycloadditions, sigmatropic rearrangements and electrocyclizations. Such pseudopericyclic reactions are typically characterized by planar (or

Figure 1: Atom numbering scheme and structures for R1, TS1 and IN. Two side views, rotated by approximately 90°, are given.

Table 2
Selected structural data and Mulliken charges (-e) for R1, TS1 and $\mathbf{I N}-\mathbf{Z Z}_{(\text {anti) }}$.

Atom Charges	R 1	TS 1	$\mathrm{IN}-\mathrm{ZZ}_{\text {(anti) }}$
N1			-0.120
C2	0.077	-0.188	
C3	0.195	0.110	0.484
C4	0.325	0.514	-0.471
C5	-0.432	-0.476	0.056
O6	0.049	0.092	
07	-0.246	-0.166	-0.105
C8	-0.239	-0.136	0.377
O9	0.365	0.370	-0.357
Bond Lengths	-0.335	-.332	
N1-C2			
C2-C3	1.462	2.099	1.345
C4-C3	1.553	2.475	1.454
C5-C4	1.482	1.350	1.295
C5-N1	1.363	1.446	1.158
O7-C3	1.418	1.304	
Bond Angles	1.202	1.162	
C3-C2-N1			
C6-C2-C3	105.49	77.68	
O7-C3-C4	129.73	171.51	
C5-N1-C2	130.73	168.29	179.52
Torsion Angles	108.25	114.07	
N1-C2-C3-C4			
C2-C3-C4-C5	-0.21	-13.25	
O6-C2-C3-C4	0.06	12.56	
C5-N1-C10-C11	-177.94	-167.10	

almost planar) transition states and low activation energy [12,16]. Decarbonylation of 2,3-dihydro- 1 H -furan-2,3diones or 2,3-dihydro- 1 H -pyrole-2,3-diones are pseudopericylic reactions that proceed via planar transition structure [17]. For decarbonylation of 4-acyl-2,3-dihy-dro-1H-pyrole-2,3-dione R1, a pseudopericyclic orbital topology is possible, with two orbital disconnections, i.e. two atoms where orthogonal sets of orbitals meet, but do not overlap. Because no electrons are exchanged between the in-plane and out-of plane orbitals, the transition state for $\mathbf{R 1}$ is orbital symmetry allowed when the CO departs in the plane of the molecule. The near planarity of TS1 and the short $\mathrm{C}=\mathrm{O}$ bond predict that the carbon monoxide product should be formed rotationally and vibrationally cold. Furthermore, the pseudopericyclic orbital topology of this reaction, combined with favorable interactions between electrophilic and nucleophilic centers, results in barriers substantially lower than would be expected for pericyclic decarbonylation analogous. This nearly planar transition structure is in contrast to other pericyclic reactions, where the transition states are usually nonplanar so as to maximize orbital overlap [17a]. Two views of the structures of R1, TS1 and IN1 are shown in Figure 1. 4-Acyl-2,3-dihydro-1 H -pyrole-2,3-dione groups of the two structures, R1 and TS1, are remarkably similar, as can be

Scheme 2

seen most clearly in the side views. All of the atoms are nearly in the same plane at R1, with the exception of phenyl groups at TS1. Torsion angle C5-N1-C10-C11 of R1 and TS1 are -179.98 and -129.25° respectively. Charge of N1 at the R1 is partial positive. As a result of the rehybridization of N 1 from sp^{3} toward sp^{2}, there is an increase in negative charge from 0.077 au , to -0.120 au (at IN1-ZZ ${ }_{(a n t i)}$) (see Table 2). Calculated charge densities of isomers of formyl(N-phenylimidoyl)ketenes IN1 show the highest positive charge on C3 ($\mathrm{q}=0.484$ 0.385 au), so that nucleophilic attack is expected to occur at C3. The molecular structures of IN1 has now been refined and distinguished by short C3-C4 and C3-O7 bond lengths of about 1.345 and $1.158 \AA$, respectively, involving the sp-hybridized carbon. The bond angles of O7-C3-C4 for R1 TS1 and IN1-ZZ (anti) are calculated as $130.73^{\circ} 168.29^{\circ}$ and 179.52°, respectively. The atom C3 conversion from sp ${ }^{2}$-hybridized state of $\mathbf{R 1}$ to the linear sp-hybridized state leads to IN1 being planer.
In general, oxoketenes are mixtures of \boldsymbol{Z} and \boldsymbol{E} isomers. Both experimental and theoretical methods were employed to study the conformational behaviour of oxo-ketene molecules $[16 \mathrm{~b}, 18]$. The conformational stability and the size of the rotational barrier of the oxo-ketenes were found to be greatly influenced by the extent of the interaction between the CO and both the $\mathrm{C}=\mathrm{C}=\mathrm{O}$ group and the substituent plays the major role in determining the direction of the conformational equilibrium in these molecules [19]. $A b$ initio calculations on a series of differently substituted imodoyl-ketenes were used to investigate $\boldsymbol{E} / \mathbf{Z}$-isomerism and rotational barriers in these molecules [20].
The preferred conformation of planar systems with sp^{2} carbon atoms can result partly from stereoelectronic effects and steric repulsion. In the usual conformation of formylketenes or imidoylketenes, the $\mathrm{C}=\mathrm{O}$ or $\mathrm{C}=\mathrm{N}$ - lone pair is \boldsymbol{Z} to the $\mathrm{C}=\mathrm{C}=\mathrm{O}$ groups, and can interact with the $\pi_{\mathrm{C} 4 \mathrm{C} 307}$ orbital. The electron-affinity of the $\pi_{\mathrm{C} 307}$ orbital of the ketene is the highest one, in comparison to the other
classes of the carbonyl compound. The \boldsymbol{E} conformers of formylketene or imodylketenes are calculated to be less stable than the \boldsymbol{Z} conformer, presumably because of dipole-dipole interactions. D. M. Birney calculated four conformers of imidoylketene, due to the possibility of syn and anti conformations of the imine hydrogen [20]. According to our PM3 calculations, formyl(N-phenylimidoyl)ketenes $\mathbf{I N} \mathbf{1}$ are mixtures of \boldsymbol{E} and \boldsymbol{Z} isomers. Due to to the possibility of syn and anti conformations of the imine phenyl, there are in fact eight isomers of IN1. Conformational structures of IN1 are shown in Figure 2. Carbonyl, imino and ketene groups are planar, except for phenyl group. The relative energies of the conformation isomers of IN1 are shown in Table 1. According to these data, IN1-ZZ $($ anti $)$ conformation should be slightly more stable than the other conformations. Steric and electronic congestion between the $\mathrm{C} 8=09$ and $\mathrm{C} 5=\mathrm{N} 1$ groups in the IN1-EE isomer forms of formyl(N-phenylimidoyl)ketene has been suggested as the origin of the conformational prefence for $\mathbf{I N} 1-Z Z_{(a n t i)}$. $\mathbf{I N 1} \mathbf{E} \boldsymbol{E}_{(\text {syn })}$ and $\mathbf{I N 1 - E E} \boldsymbol{E}_{(\text {anti) }}$

Figure 2: Views of calculated geometries of intermediates, IN1.
conformations of IN1 are unstable in energy. Relative energy of $\mathbf{I N 1}-\boldsymbol{E E}_{(\text {syn })}$ and $\mathbf{I N 1}-\boldsymbol{E E}_{(\text {anti) }}$ are $9.75,11.53$ $\mathrm{kcal} . \mathrm{mol}^{-1}$, respectively. Electron density is distributed between the carbonyl and imino groups in IN1-EE $\boldsymbol{E}_{(\text {syn })}$ and IN1-EE $\boldsymbol{E}_{(a n t)}$ (see Figure 2). These structures represent the transition state on the potential energy surface. The imaginary frequencies of IN1-EE $\boldsymbol{E s y n}$ and IN1-EE $\boldsymbol{E}_{(\text {anti })}$ are 49.88 and $27.46 \mathrm{icm}^{-1}$ respectively. Steric hindrance would also be expected to play a role in the conformational preference of IN1-EE, although electronic factors may also be important. The most dramatic distortions are seen in the C8-C4-C5 angles. In IN1-EE $\boldsymbol{E}_{(a n t i)}$, this angle is 10.24° wider than in $\mathbf{I N 1}-\mathbf{Z Z} \mathbf{Z}_{(a n t i)}$ in order to accommadate the two electron withdrawing groups $(\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{N})$ and steric hindrance between the imino phenyl and carbonyl groups $(\mathrm{C}=\mathrm{O})$. The $\mathrm{C} 8-\mathrm{C} 4-\mathrm{C} 5$ angle in $\mathbf{I N}-\boldsymbol{E E}_{(a n t i)}$ is 3.04, bigger then that in $\mathbf{I N 1}-\boldsymbol{E E}_{(s y n)}$. The C4-C5-N1 angle in IN1$\boldsymbol{E} \boldsymbol{E}_{(\text {anti) }}$ is 133.81°, which is larger than the $\mathbf{I N 1} \boldsymbol{- E E} \boldsymbol{E}_{(\text {syn) }}$, 121.61°. An alternative model, which offers a more consistent explanation of the stability of the IN1-EZ or IN1-ZE forms, except for IN1-EE conformations, is based on the electrostatic interactions of the array of atomic charges. The central carbon, C3, of the formyl(N-phenylimidoyl)ketene IN1 functionality bears a partial positive charge (0.484-0.385 au) and the carbonyl oxygen (-0.363- -0.289 au) and imino nitrogen (-0.088--0.120au) bear a partial negative charge. The \boldsymbol{Z} conformations bring these charges into close proximity and, thus, should be stabilized by the electrostatic attraction between these three centers. Due to partial negative charge effect between the $\mathrm{C} 8=\mathrm{O} 9$ and $\mathrm{C} 5=\mathrm{N} 1$ groups at $\mathbf{I N} \mathbf{1} \boldsymbol{E} \boldsymbol{E}_{(a n t i)}$ atom charges enforce a lesser degree of charge separation (see Figure 2). The charge of C3 at $\mathbf{I N} 1-\boldsymbol{E E}_{(s y n)}$ and $\mathbf{I N} 1-\boldsymbol{E E}_{(a n t i)}$ is 0.398 and 0.385 au , respectively. Since electronic interactions of the nucleophylic imine nitrogen with electrophylic ketene carbon C3 is more than carbonyl oxygen lone pair with C3, $\mathbf{I N} 1-\boldsymbol{E} \boldsymbol{Z}_{(\text {anti) }}$ conformer is lower energy than $\mathrm{IN}-\boldsymbol{Z} \boldsymbol{E}_{(a n t i)}$ and IN1-Z $\boldsymbol{E}_{(s y n)}$, thus, more stable than the corresponding, and as there is no interaction between the lone pairs of O8 and N1 with C3 in $\mathbf{I N 1}-E Z_{(s y n)}$, this conformation is less stable than $\mathbf{I N 1} \mathbf{- Z E} \boldsymbol{E}_{(s y n)}$.

Birney and coworkers have previously shown that the relative energies of oxo-ketenes conformers do not correlate with the dipole moments [6b,18d]. In the case of formyl $(N$-phenylimidoyl $)$ ketenes the same result has been obtanined by using PM3 calculations methods. For example, $\mathbf{I N 1}-\mathbf{Z Z}_{(s y n)}$ has the lowest dipole moment (0.86 D), but the third highest relative energy ($2.62 \mathrm{kcal} . \mathrm{mol}^{-1}$) as compared to $\mathbf{I N 1 - Z Z} \mathbf{I a n t i)}$.

We have studied the ring-closure of the formyl(N phenylimidoyl)ketenes $\mathbf{I N} \mathbf{1 - E Z}\left(\right.$ anti) ${ }^{\text {to cyclic } N \text {-phenyla- }}$ cylazetion IN2 and N-phenylimodyloxetone IN3 (see Figure 3). Energetic aspects obtained for the two cyclizations are collected in Table 1. Involvement of the lone pair of nitrogen or oxygen atom is expected to facilitate the interaction between the vacant carbon p orbital of the ketene LUMO and lone pair electrons of nitrogen or oxygen atom, but azetin-2-one and oxetone-2-one cycles are unstable [16b,17b,18a,c,21]. Azetin-2-ones are rather elusive compounds requiring sterically protecting groups such as adamantyl or tert-butyl for stabilization under ordinary reaction conditions [11c]. Alajarin et al. have carried out ab initio calculations showing that the energy barrier for the ring closure of N -formylimidoylketene to N formylazetone is $23.24 \mathrm{kcal} . \mathrm{mol}^{-1}$, being an endotermic process [21c].

Bond orders of N1-C3 and O9-C3 at IN1-ZZ (anti) structure are 0.038 and 0.027 respectively. Electronic repulsion between O 9 and C 3 is weaker than that between N 1 and C 3 . Ring-closure of the formyl(N-phenylimidoyl)ketenes, the $\mathbf{I N 1} 1-Z_{(a n t i)}$, to cyclic azetin-2-one IN2 and oxetone-2-on IN3 is computed to be higher in energy than that of $\mathbf{I N 1 - Z Z} \mathbf{(a n t i)}$. We located the transition states TS2 and TS3 for this isomer. The barriers for these are comparable, $20.25 \mathrm{kcal}^{\mathrm{kc}} \mathrm{mol}^{-1}$ for $\mathbf{T S} 2$ and $34.94{\mathrm{kcal} . \mathrm{mol}^{-1}}$ for $\mathbf{T S 3}$. There is a good match between the nucleophilic imine nitrogen and electrophlic ketene carbon of $\mathbf{I N}-\mathbf{Z Z}($ anti) isomer, which favors the reaction than between oxygen and C3. Also, resonance in amides is stronger than in esters, thus lactam TS2 and IN2 is stabilized more than TS3 and IN3. At TS2, the distance of C3-N1, which can be considered as the reaction coordinate, reaches $1.831 \AA$. This is

Figure 3: Atom-numbering scheme and structures for TS2, TS3, IN2 and IN3. Two side views, rotated by approximately 90°, are given for TS2 and TS3.
very close to the value $1.544 \AA$ in the ring IN2 (see Table 3). Our calculations show that the formation energy of $\mathbf{I N 1}-\mathbf{Z Z}_{(\text {anti) }}$ lies $15.74 \mathrm{kcal}^{\mathrm{kc}} \mathrm{mol}^{-1}$ below that of its cyclic isomer IN2 $\mathbf{2}_{\text {(pyramidal) }}$ and it undergoes ring-closure with an energy barrier of $20.25 \mathrm{kcal} . \mathrm{mol}^{-1}$. The azetin-2ones, IN2, possesses the additional feature that resonance of the carbonyl groups leads to formally anti-aromatic structure. This suggests that the ring IN2 is thermodynamically less stable than open forms of IN1. Regarding the structural features of azetone-2-one IN2, the pyramidal geometry of the nitrogen atom is remarkable. The degree of pyramidalization can be measured by the sum of the bond angles at the nitrogen atom, which is 339.35°. The planar structure of IN2 is characterized as a transition structure for nitrogen inversion. There is only one imaginary vibrational frequency in the transition state, $v=$ $161.41 \mathrm{icm}^{-1}$. The analysis of the hessian eigenvector associated with this frequency indicates that the bond is bending rather than stretching. The sum of the bond angle at the nitrogen atom in the planar IN2 structure is 359.99°, which is showing an almost planar geometry. This value is nearly equal to the corresponding value of N-formylazeton [21c]. The inversion energy barrier from pyramidal IN2 to planar structure of IN2 is $2.01 \mathrm{kcal}^{\mathrm{kc}} \mathrm{mol}^{-1}$. The value for unsubstituted azetidin-2-one has been found to be $5.8 \mathrm{kcal} . \mathrm{mol}^{-1}$ by Nguyen [18a]. The angle O7-C3-C4 in pyramidal structure IN2 is lower than the planar structure IN2 (142.77:144.28). A transition structure TS3 for the electro-
cyclization of $\boldsymbol{I N}-\mathbf{Z} \boldsymbol{Z}_{(a n t i)}$ to generate IN3 was also located. The geometry of TS3 is remarkably similar to the ring closing transition state TS2 described above. The frequency analysis confirmed both structures IN3 and IN2 $\mathbf{(p y r a m i d a l) ~}$ as minima, isomer IN2 ${ }_{\text {(pyramidal) }}$ being the most stable one by $15.74 \mathrm{kcal}^{\mathrm{k}} \mathrm{mol}^{-1}$.

In the case of electrocyclic reactions the 1,4-cyclization of IN1-ZZ $Z_{(\text {anti) }}$ to both IN2 and IN3 were found to be proceed in a pseudopericyclic manner, by in plane attack of the lone-pair of electrons on the imine nitrogen or carbonyl oxygen to the electrophilic ketene carbon, respectively. The most prominent feature of TS2 and TS3 are complete planarity (N1-C3-C4-C5=0.00 ${ }^{\circ}$ and C3-C4-O8-C9 = 0.18°), conforming the pseudopericyclic nature of this ring closure reaction. The IN2 cyclization requires an $\mathbf{Z}_{(a n t i)}$ configuration of the imine group as in $\mathbf{I N 1}-\mathbf{Z Z} \mathbf{Z a n t i)}$ so that the lone pair of electrons on the imine nitrogen is oriented toward the ketene functionality. Note that for this cyclization mode no rotation of the imine group is required which therefore can be designated as a "nonrotatory" cyclization. The N1-C3 bond distance changes, but the N1-C3-C4-C5 system remains essentially planar. Our calculations show that, TS2 and TS3 are associated with a concerted process whose primary changes in bonding compass a cyclic array of atoms, where nonbonding and bonding atomic orbitals interchange their roles. The geometric and electronic features of both transition structures, TS2 and TS3, do not correspond to those expected for a conrotatory mecha-

Table 3
Selected structural data and Mulliken charges for $\mathbf{I N}-\mathbf{Z Z}_{(\text {anti) }}, \mathbf{I N} \mathbf{2}_{\text {(pyramidal) }}, \mathbf{I N 3}$, TS2 and TS3.

Atom charges	$\mathrm{IN1} 1-\mathrm{ZZ}_{\text {(anti) }}$	TS2	IN2 ${ }_{\text {(pyramidal }}$	TS3	IN3
N1	-0.120	-0.153	-0.054	-0.085	-0.029
C3	0.484	0.532	0.404	0.526	0.452
C4	-0.471	-0.531	-0.429	-0.404	-0.298
C5	0.056	0.130	0.070	0.038	0.012
07	-0.105	-0.186	-0.224	-0.178	-0.223
C8	0.377	0.338	0.373	0.275	0.149
O9	0.377	0.338	0.373	0.275	0.149
Bond Lengths					
N1-C3	2.782	1.831	1.544	3.065	3.153
C4-C3	1.345	1.458	1.504	1.464	1.508
C5-C4	1.454	1.409	1.363	1.433	1.437
C5-N1	1.295	1.360	1.458	1.296	1.292
O7-C3	1.158	1.169	1.189	1.169	1.185
C8-09	1.214	1.215	1.209	1.331	1.402
C3-09	2.827	3.058	3.171	1.713	1.495
Bond Angle					
N1-C3-C4		79.87	85.72		
C8-O9-C3				84.19	87.57
N1-C5-C4	119.77	98.18	94.71	119.55	119.50
O7-C3-C4	179.52	157.36	142.77	157.75	148.81
C8-C4-C5	119.77	131.73	133.92	134.91	136.03
Torsion Angle					
C3-C4-C8-C9	0.00	-0.19	13.20	-0.18	0.00
N1-C3-C4-C5	0.00	0.00	-4.33	-2.62	0.02

nism. The bond angles, O7-C3-C4, for $\mathbf{I N 1} \mathbf{- Z Z}_{(a n t i)}$, TS2, IN2, TS3, and IN3 are 179.52, 157,36, 142.77, 157.75°, and 148.81°, respectively.

A transition structure TS4 for the electrocyclization of $\mathbf{I N 1}^{\mathbf{Z}} \mathbf{Z Z}_{(\text {syn })}$ to generate $\mathbf{I N 4}$ was also located (see Figure 4). The energy barrier for the ring closure from $\mathbf{I N 1} \mathbf{- Z Z} \mathbf{Z s y n}$ to IN4 is $24.80{\mathrm{kcal} . \mathrm{mol}^{-1} \text {. Table } 4 \text { shows the main distances, }}^{2}$ bond angles and torsion angles for each of the optimized geometries. Molecular orbital calculated charge densities of formyl(N-phenylimidoyl)ketene $\mathbf{I N 1} \mathbf{- Z Z}_{(\text {syn })}$ show the highest positive charge on C3 ($\mathrm{q}=0.454 \mathrm{au}$), so that nucleophilic attack of negative C11 (-0.123 au) is expected to occur at C3. The most important factor governing the PyC11 orbital (or PyC12) of the phenyl group is electron donation from this group into the ketene C 3 atom (PyC 3), which has a large coefficient at the central ketene C atom to which the attack takes place, resulting in the pyramidalization of C 11 . The value of valence angle of $\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 13$ at TS4 is 116.03° and at IN4 is close to that of bonds in sp^{3} hybridized carbon $\left(105.95^{\circ}\right)$. It can be clearly seen that there is a loss of the phenyl nodal plane and a partial loss of aromaticity in phenyl both in structures TS4 and IN4. When the IN1$Z Z_{(\text {syn })}$ is being transformed into its transition state, TS4, the C3-C11 bond length decreases. One of the major outcomes of this strong interaction of C 3 with phenyl is that the carbon atom C11 of benzene which is closest to the C3 atom becomes highly nucleophilic at TS4. This is clearly demonstrated in Table 4 where in the partial charges of selected atoms are given (-0.315 au for C11 and 0.493 au for C3). The torsion angle of N1-C10-C11-H13 (48.01 $)$ clearly shows that the atoms are not coplanar.

The small computed energy of IN4 confirms our hypothesis that the donor-acceptor interaction between the π electrons of phenyl groups and the vacant carbon p orbital of the ketene LUMO is the key factor in stabilizing the IN4 $\left(\Delta \mathrm{H}_{\mathrm{rel}}=2.00 \mathrm{kcal} . \mathrm{mol}^{-1}\right)$. The electrocyclization reaction of

Figure 4: Atom-numbering scheme and structures for $\mathbf{I N}-Z_{(s y n)}$, IN4), TS4, TS5, P1, P2 and P3. Two side views, rotated by approximately 90°, are given for $\mathbf{I N}-\mathbf{Z Z}(s y n)$, TS4, IN4 and.TS5.

Table 4
Selected structural data and Mulliken charges for $\mathbf{I N}-Z_{(\text {(syn })}$, IN4, TS4, TS5 and P1.

Atom Charges	IN-ZZ				
(syn)	TS4	IN4	TS5	P1	
N1	-0.088	-0.215	-0.127	-0.144	0.224
C3	0.454	0.493	0.349	0.392	0.349
C10	-0.053	0.150	0.053	0.071	-0.069
C11	-0.123	-0.315	-0.109	-0.251	-0.174
H13	0.114	0.194	0.122	0.232	0.074
Bond Lengths					
C5-N1	1.288	1.332	1.409	1.349	1.386
N1-C10	1.428	1.380	1.311	1.372	1.421
C10-C11	1.400	1.432	1.504	1.444	1.404
C11-H13	1.096	1.112	1.126	1.447	3.315
N1-H13	2.685	2.761	2.965	2.607	0.993
C3-C11	3.514	1.914	1.530	1.514	1.487
O7-H13	4.080	2.794	2.889	2.808	5.060
Bond Angles					
C10-C11-H13	120.70	116.03	105.95	100.54	
C4-C3-C11	92.41	107.43	115.08	115.73	115.65
O7-C3-C4	177.69	142.59	122.90	129.62	122.68
Torsion Angles					
C5-N1-C10-C11	-93.82	-32.46	-5.58	5.93	8.82
N1-C10-C11-H13	80.75	48.01	23.64	29.18	2.59
C11-C3-C4-C5	20.28	6.15	17.07	55.26	
C10-C11-C3-C4	-59.90	-34.40	-27.94	-55.80	-1.41
N1-C10-C11-C13	5.42	-90.62	-46.61	-45.44	

$\mathbf{I N}-\mathbf{Z Z}_{(\text {syn })}$ to $\mathbf{P 1}$ are normal pericyclic reactions. The IN4 is a true minimal energy structure (all positive vibrational frequencies), while TS4 and TS5 each have one imaginary frequency. The hydrogen migration in the transition state TS5 is supported by the analysis of motion along the imaginary vibrational mode. This mode's frequency is very large, $1600.44 \mathrm{~cm}^{-1}$, and the corresponding reduced mass of 0.983 amu is very close to that of the hydrogen atom. The structure of the transition state TS5 corresponds to the H 13 atom inserting into the $\mathrm{C} 5=\mathrm{N} 1$ bond and involves primarily hydrogen migration from C 11 . The reacting atoms approach cause the C11-H13 bond length to increase and C5=N1 double bond to be weaken. The transition state TS5 is characterized by the presence of a four membered cycle. For TS5, the bond distances N1-C10, C10-C11 and C11H13 are $1.372,1.444$ and $1.447 \AA$, respectively (see Table 4). Bond length of H 13 to N 1 and O 7 at the TS5 are 2.607 and $2.808 \AA$, respectively. As H13 lies directly over the π cloud of the ring, H13 shifts on to N1 not on to O7. The calculated heat of formation of enol structure $\mathbf{P} 2$ were compared with that of keto structure P1, which is slightly more stable than the enol form P2.

EXPERIMENTAL

Solvents were dried by refluxing the appropriate drying agent and distilled before use. Melting points were determined on the Electrothermal 9200 apparatus and are uncorrected.

Microanalyses were performed on a Carlo Erba Elemental Analyser Model 1108; the results agreed favourably with the calculated values. IR spectra were recorded on a Shimadzu Model 435 V-04 spectrometer, using potassium bromide discs. ${ }^{1} \mathrm{H}$ and ${ }^{13}$ C NMR spectra were recorded on Varian 4200 Gemini spectrometer. The chemical shifts are reported in ppm from tetramethylsilane and given in δ units. All experiments were followed by tlc using DC Alufolien kieselgel $60 \mathrm{~F}_{254}$ Merck and with a Model Camag tlc lamp ($254 / 366 \mathrm{~nm}$).

Synthesis of the 2,3-Dihydro-1 H -pyrole-2,3-diones (3a).

General Procedures.

Appropriate amounts of 4-(-4-methoxybenzoyl)-5-(-4-methoxy-phenyl)-2,3-dihydro- 1 H -2,3-furandione 1 and the corresponding Schiff bases 2a-f were mixed and allowed to react for $48-96 \mathrm{~h}$ at $60-70^{\circ} \mathrm{C}$ in an oven. The red crude product formed was triturated with dry ether, collected by filtration and recrystallized from a suitable solvent and dried on $\mathrm{P}_{2} \mathrm{O}_{5}$.
4-(4-Methoxybenzoyl)-5-(4-methoxyphenyl)-1-phenyl-2,3-dihy-dro- 1 H -pyrrole-2,3-dione (3a).
$1 \mathrm{~g}(2.96 \mathrm{mmol})$ of $\mathbf{1}$ and $0.54 \mathrm{~g}(2.96 \mathrm{mmol}) \mathrm{N}$-benzylidene aniline 2a yield $1.02 \mathrm{~g}(83 \%)$ of $\mathbf{3 a}$ (reaction time and temperature 48 $\mathrm{h}, 60{ }^{\circ} \mathrm{C}$), mp $182{ }^{\circ} \mathrm{C}$ (xylene); ir (KBr): v=1750, 1710, 1640 $(\mathrm{C}=\mathrm{O}), 1600-1480(\mathrm{C} \cdots \mathrm{C}$ and $\mathrm{C} \cdots \mathrm{N}$, aromatic rings), 1360 ($\mathrm{O}-$ $\left.\mathrm{CH}_{3}\right), 1300(\mathrm{C}-\mathrm{N}), 1240,1060 \mathrm{~cm}^{-1}\left(\mathrm{C}-\mathrm{O}-\mathrm{C} \mathrm{v}_{\mathrm{as}}, \mathrm{v}_{\mathrm{s}}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): $\delta=7.97-6.74(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.69$ ppm (s, 3H, OCH ${ }_{3}$); ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right): ~ \delta=187.79(\mathrm{t}, j=3.7 \mathrm{~Hz}$, ArCO), 179.28 ($\mathrm{s}, \mathrm{C}_{3}=\mathrm{O}$), 172.02 ($\mathrm{s}, \mathrm{C}-5$), 163.69 ($\mathrm{s}, \mathrm{C}-10$), 163.12 (s, C-17), 162.30 ($\mathrm{s}, \mathrm{C}_{2}=\mathrm{O}$), 158.45 ($\mathrm{s}, \mathrm{C}-21$), 113.91 ($\mathrm{s}, \mathrm{C}-4$), 136.08-112.67 (m, aromatic C's), 55.85, 55.68 (two s, $2 \times \mathrm{OCH}_{3}$).

Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{5}$: C, $72.63 ; \mathrm{H}, 4.63$; N, 3.39. Found: C, 72.90; H, 4.65; N, 3.33.

4-(4-Methoxybenzoyl)-5-(4-methoxyphenyl)-1-(2-methyl-phenyl)-2,3-dihydro-1 H -pyrrole-2,3-dione (3b).
$1 \mathrm{~g}(2.96 \mathrm{mmol})$ of $\mathbf{1}$ and $0.58 \mathrm{~g}(2.96 \mathrm{mmol}) \mathrm{N}$-(benzylidene)-2methylaniline $\mathbf{2 b}$ afford $1.07 \mathrm{~g}(85 \%)$ of $\mathbf{3 b}$ (reaction time and temperature $48 \mathrm{~h}, 65-70{ }^{\circ} \mathrm{C}$), mp 232-233 ${ }^{\circ} \mathrm{C}$ (xylene); ir (KBr): $v=1750,1710,1640(\mathrm{C}=\mathrm{O}), 1605-1480 \mathrm{~cm}^{-1}(\mathrm{C} \cdots \mathrm{C}$ and $\mathrm{C} \cdots \mathrm{N}$, aromatic rings); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta=7.88-6.66(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.25 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta=189.46(\mathrm{t}, j=3.8 \mathrm{~Hz}, \mathrm{ArCO}), 180.58\left(\mathrm{~s}, \mathrm{C}_{3}=\mathrm{O}\right)$, 175.29 (t, j=4.3 Hz, C-5), 166.07 (s, C-10), 165.27 (s, C-17), 160,01 ($\mathrm{s}, \mathrm{C}_{2}=\mathrm{O}$), 134.80 ($\mathrm{s}, \mathrm{C}-21$), 115.76 ($\mathrm{s}, \mathrm{C}-4$), 138.35-114.65 (m, Aromatic C's), 57.49, 57.38 (s, $2 \times \mathrm{OCH}_{3}$), 20.13 ($\mathrm{s}, \mathrm{CH}_{3}$).

Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{5}$: C, 73.06; H, 4.95; N, 3.28. Found: C, 72.95; H, 4.88; N, 3.49.

4-(4-Methoxybenzoyl)-5-(4-methoxyphenyl)-1-(4-methyl-phenyl)-2,3-dihydro-1 H -pyrrole-2,3-dione (3c).
$1 \mathrm{~g}(2.96 \mathrm{mmol})$ of $\mathbf{1}$ and $0.58 \mathrm{~g}(2.96 \mathrm{mmol}) \mathrm{N}$-(benzylidene)-4-methylaniline 2c yield $1.05 \mathrm{~g}(83 \%)$ of 3c (reaction time and temperature $48 \mathrm{~h}, 60^{\circ} \mathrm{C}$), mp $180^{\circ} \mathrm{C}$ (toluene); ir (KBr): $v=1755$, 1705, $1640(\mathrm{C}=\mathrm{O}), 1600-1460 \mathrm{~cm}^{-1}(\mathrm{C} \stackrel{\cdots}{ } \mathrm{C}$ and $\mathrm{C}-\mathrm{N}$, aromatic rings); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta=7.84-6.66(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.83$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right): \delta=189.46$ (t, $j=4.0 \mathrm{~Hz}, \mathrm{ArCO}$), 180.54 ($\mathrm{s}, \mathrm{C}_{3}=\mathrm{O}$), 174.65 (t, $j=4.4 \mathrm{~Hz}, \mathrm{C}-5$), 166.02 ($\mathrm{s}, \mathrm{C}-10$), 165.16 ($\mathrm{s}, \mathrm{C}-17$), 160.23 ($\mathrm{s}, \mathrm{C}_{2}=\mathrm{O}$), 115.73 ($\mathrm{s}, \mathrm{C}-4$), 140.40-114.82 (m, aromatic C's), 57.49, 57.41 (two s, $2 \times \mathrm{OCH}_{3}$), $23.09\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{5}$: C, 73.06; H, 4.95; N, 3.28. Found: C, 73.25; H, 4.86; N, 3.30.
4-(4-Methoxybenzoyl)-5-(4-methoxyphenyl)-1-(1-naphtyl)-2,3-dihydro- $1 H$-pyrrole-2,3-dione ($\mathbf{3 d}$).
$1 \mathrm{~g}(2.96 \mathrm{mmol})$ of $\mathbf{1}$ and $0.68 \mathrm{~g}(2.96 \mathrm{mmol}) N$-(benzyli-dene)naphthalen-1-amine benzylidene-1-naphtyl amine 2d yield $0.96 \mathrm{~g}(70 \%)$ of $\mathbf{9 d}$ (reaction time and temperature 48h, 65-70 ${ }^{\circ} \mathrm{C}$), mp 209-210 ${ }^{\circ} \mathrm{C}$ (toluene); ir (KBr): $\mathrm{v}=1760,1710,1640$ $(\mathrm{C}=\mathrm{O}), 1600-1460 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$, aromatic rings),
 $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta=7.94-6.53(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.87\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$, $3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta=189.51(\mathrm{t}, j=4.2$ $\mathrm{Hz}, \mathrm{ArCO}$), 180.56 ($\mathrm{s}, \mathrm{C}_{3}=\mathrm{O}$), 175.87 ($\left.\mathrm{t}, j=3.5 \mathrm{~Hz}, \mathrm{C}-5\right), 166.11$ ($\mathrm{s}, \mathrm{C}-10$), 165.25 ($\mathrm{s}, \mathrm{C}-17$), 160.64 ($\mathrm{s}, \mathrm{C}_{2}=\mathrm{O}$), 115.61 ($\mathrm{s}, \mathrm{C}-4$), 136.34-115.14 (m, aromatic C's), 57.50, 57.30 (two s, $j=145.7$ $\mathrm{Hz}, 2 \times \mathrm{OCH}_{3}$).

Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{NO}_{5}: \mathrm{C}, 75.15 ; \mathrm{H}, 4.57 ; \mathrm{N}, 3.02$. Found: C, 75.16; H, 4.31; N, 3.04.
1,2-Bis[4-(4-methoxybenzoyl)-5-(4-methoxyphenyl)-2,3-dihy-dro- 1 H -pyrrole-2,3-dione-1-yl]ethane (3e).
$1 \mathrm{~g}(2.96 \mathrm{mmol})$ of $\mathbf{1}$ and $0.35 \mathrm{~g}(1.48 \mathrm{mmol}) N, N$-bis(benzyli-dene)ethane-1,2-diamine 1,2-dibenzylidene ethylenediamine 2 e yield $1.66 \mathrm{~g}(80 \%)$ of 9 e (reaction time and temperature $96 \mathrm{~h}, 60$ ${ }^{\circ} \mathrm{C}$), mp $148-150{ }^{\circ} \mathrm{C}$ (chloroform $/ \mathrm{n}$-hexane); ir (KBr): $v=1750$, 1720, 1700, 1650, 1640 ($\mathrm{C}=\mathrm{O}$ groups), 1600-1480 ($\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$, aromatic rings), $1370\left(\mathrm{O}-\mathrm{CH}_{3}\right), 1320(\mathrm{C}-\mathrm{N}), 1250,1040$ $\mathrm{cm}^{-1}\left(\mathrm{C}-\mathrm{O}-\mathrm{C}_{\mathrm{as}}, \nu_{\mathrm{s}}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta=7.75-6.55(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar}-$ $\mathrm{H}), 3.80-3.77\left(12 \mathrm{H}, 4 \times \mathrm{OCH}_{3}\right), 3.70-3.55\left(4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$ $\mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta=188.67(\mathrm{t}, j=3.8 \mathrm{~Hz}, 2 \times \mathrm{ArCO})$, 180.62 (s, C-3 and C-3'), 175.03 (t, $j=4.4 \mathrm{~Hz}, \mathrm{C}-5$ and C-5'), 165.98 (d, C-10 and C-10'), 165.06 ($\mathrm{s}, \mathrm{C}-17$ and C-17'), 160.92 (s, C-2 and C-2'), 120.63 (s, C-4 and C-4'), 134.02-115.00 (m, aromatic C's), $57.44,57.17$ (two d, $j=145.7 \mathrm{~Hz}, 4 \times \mathrm{OCH}_{3}$), 41.77 ($\mathrm{s},-\mathrm{CH}_{2} \mathrm{CH}_{2}$-).

Anal. Calcd. for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{10}$: C, 68.57; H, 4.60; N, 4.00. Found: C, 68.27; H, 4.45; N, 4.21.
1,4-Bis[4-(4-methoxybenzoyl)-5-(4-methoxyphenyl)-2,3-dihy-dro-1 H -pyrrole-2,3-dione-1-yl]benzene ($\mathbf{3 f}$).
$1 \mathrm{~g}(2.96 \mathrm{mmol})$ of $\mathbf{1}$ and $0.42 \mathrm{~g}(1.48 \mathrm{mmol}) N, N^{\prime}$-bis(benzylidene) benzene-1,4-diamine $\mathbf{2 f}$ yield $1.77 \mathrm{~g}(80 \%)$ of $\mathbf{9 f}$ (reaction time and temperature $96 \mathrm{~h}, 60^{\circ} \mathrm{C}$), mp $152^{\circ} \mathrm{C}$ (chloroform/nhexane); ir (KBr): v=1770, 1720, 1700, 1650, 1640 ($\mathrm{C}=\mathrm{O}$ groups), 1600-1480 ($\mathrm{C} \cdots \mathrm{C}$ and $\mathrm{C}-\mathrm{N}$, aromatic rings), 1360 $\left(\mathrm{O}_{-\mathrm{CH}_{3}}\right), 1310(\mathrm{C}-\mathrm{N}), 1250,1050 \mathrm{~cm}^{-1}\left(\mathrm{C}-\mathrm{O}-\mathrm{C} v_{\mathrm{as}}, \mathrm{v}_{\mathrm{s}}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right): \delta=8.01-6.60(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.83-3.62(\mathrm{~b}, 12 \mathrm{H}, 4 \mathrm{x}$ $\left.\mathrm{OCH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta=189.39(\mathrm{t}, j=4.2 \mathrm{~Hz}, 2 \mathrm{x}$ ArCO), 180.34 ($\mathrm{s}, \mathrm{C}-3$ and $\left.\mathrm{C}-3^{\prime}\right), 173.42(\mathrm{t}, j=4.5 \mathrm{~Hz}, \mathrm{C}-5$ and C$\left.5^{\prime}\right), 166.47$ (d, C-10 and C-10'), 165.39 (s, C-17 and C-17'), 160.11 ($\mathrm{s}, \mathrm{C}-2$ and C-2'), 120.77 ($\mathrm{s}, \mathrm{C}-4$ and C-4'), 135.05-115.05 (m, aromatic C's), $57.48,57.20$ (two d, $j=145.7 \mathrm{~Hz}, 4 \mathrm{xOCH}_{3}$).

Anal. Calcd. for $\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{10}: \mathrm{C}, 70.58 ; \mathrm{H}, 4.31$; N, 3.74. Found: C, 70.31; H, 4.58; N, 4.01.

Thermolysis of the 2,3-Dihydro-1H-pyrole-2,3-diones 3a-d and Synthesis of the 1 H -Quinolin-4-ones (5a-d).

General Procedures.

Approximately 10 min . heating on an oil-bath of 2,3-dihy-dro-1 H -pyrole-2,3-diones 3a-d (1 g , equivalent mol) at 240-
$250{ }^{\circ} \mathrm{C}$ led to a crude product, which was treated with ether and recrystallized from n-butanol and left to dry on $\mathrm{P}_{2} \mathrm{O}_{5}$ to give 5a-d (40-52 \%).

3-(4-methoxybenzoyl)-2-(4-methoxyphenyl)quinolin-4(1 H)-one (5a).
This compound was obtained by the general procedure as white solid, mp $262^{\circ} \mathrm{C}$, yield $0.42 \mathrm{~g}(45 \%)$; ir (KBr): $\mathrm{v}=3360$ (b, $\mathrm{N}-\mathrm{H}), 1670,1630(\mathrm{C}=\mathrm{O}), 1600-1450(\mathrm{C} \cdots \mathrm{C}$ and $\mathrm{C}-\mathrm{N}$, aromatic rings), $1360\left(\mathrm{O}-\mathrm{CH}_{3}\right), 1300 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{N}) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSOd_{6}): $\delta=12.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 8.14-6.94(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.81$, $3.76\left(6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{DMSO}_{6}\right): \delta=195.96$ (t, $j=3.8$ $\mathrm{Hz}, \mathrm{ArCO}$), 176.84 (d, $j=2 \mathrm{~Hz}, \mathrm{C}-4$), 164.83 ($\mathrm{s}, \mathrm{C}-15$), 162.31 (s , C-22), 150.47 (t, $j=4.1 \mathrm{~Hz}, \mathrm{C}-2$), 141.74 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 127.71 ($\mathrm{s}, \mathrm{C}-$ 4a), 133.96-115.71 (m, aromatic C's), 115.60 (s, C-3), 57.26, $57.10\left(\mathrm{~s}, j=145.7 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{3}\right)$.
Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, 74.79; H, 4.97; N, 3.63. Found: C, 74.63; H, 4.97; N, 3.48.
3-(4-Methoxybenzoyl)-2-(4-methoxyphenyl)-8-methylquinolin$4(1 H)$-one (5b).

This compound was obtained by the general procedure as white solid, $\mathrm{mp} 233^{\circ} \mathrm{C}$, yield $0.49 \mathrm{~g}(52 \%)$; ir (KBr): $\mathrm{v}=3350$ (b, $\mathrm{N}-\mathrm{H}), 1680,1635(\mathrm{C}=\mathrm{O}), 1600-1450(\mathrm{C} \cdots \mathrm{C}$ and $\mathrm{C} \cdots \mathrm{N}$, aromatic rings), $1360\left(\mathrm{O}_{\left.-\mathrm{CH}_{3}\right), 1300 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{N}) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \text { : }}^{\text {: }}\right.$ $\delta=8.56-6.62(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.80,3.67\left(6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 2.47(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta=196.17(\mathrm{t}, j=4 \mathrm{~Hz}, \mathrm{ArCO})$, 178.38 (d, $j=2.1 \mathrm{~Hz}, \mathrm{C}-4), 165.42$ ($\mathrm{s}, \mathrm{C}-15$), 163.06 ($\mathrm{s}, \mathrm{C}-22$), 150.49 ($\mathrm{t}, j=3.6 \mathrm{~Hz}, \mathrm{C}-2$), 140.06 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 127.22 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 135.22-116.36 (m, aromatic C's), 115.62 (s, C-3), 57.36, 57.22 (s, $\left.j=145 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{3}\right), 18.64\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, $75.17 ; \mathrm{H}, 5.30 ; \mathrm{N}, 3.51$. Found: C, 74.93; H, 5.29; N, 3.50.
3-(4-Methoxybenzoyl)-2-(4-methoxyphenyl)-6-methylquinolin$4(1 \mathrm{H})$-one ($\mathbf{5 c}$).

This compound was obtained by the general procedure as light yellow solid, $\mathrm{mp} 141^{\circ} \mathrm{C}$, yield $0.37 \mathrm{~g}(40 \%)$; ir (KBr): $\mathrm{v}=3350$ (b, N-H), 1680, $1635(\mathrm{C}=\mathrm{O}), 1600-1460(\mathrm{C} \cdots \mathrm{C}$ and $\mathrm{C} \cdots \mathrm{N}$, aromatic rings), $1360\left(\mathrm{O}_{\left.-\mathrm{CH}_{3}\right), 1300 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{N}) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \text { : }}^{\text {: }}\right.$ $\delta=11.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.68-6.38(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.74,3.46(\mathrm{~m}$, $\left.6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta=$ 197.34 (t, $j=4.2 \mathrm{~Hz}, \mathrm{ArCO}$), 178.08 (d, C-4), 165.32 (s, C-15), 162.58 (s, C-22), 151.55 (t, $j=3.5 \mathrm{~Hz}, \mathrm{C}-2$), 140.15 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 127.75 (s, C-4a), 135.53-115.67 (m, aromatic C's), 115.50 (s, C3), $57.31,56.88$ (two s, $2 \times \mathrm{OCH}_{3}$), $23.08\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{4}: \mathrm{C}, 75.17 ; \mathrm{H}, 5.30 ; \mathrm{N}, 3.51$. Found: C, 75.04; H, 5.36; N, 3.49.
3-(4-Methoxybenzoyl)-2-(4-methoxyphenyl)benzo[h]quinolin$4(1 H)$-one (5d).

This compound was obtained by the general procedure as white solid, $\mathrm{mp} 141^{\circ} \mathrm{C}$, yield $0.44 \mathrm{~g}(47 \%)$; ir (KBr): $\mathrm{v}=3300$ (b, $\mathrm{N}-\mathrm{H}), 1670,1630(\mathrm{C}=\mathrm{O}), 1600-1450(\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$, aromatic rings), $1350\left(\mathrm{O}-\mathrm{CH}_{3}\right), 1300 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{N}) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$: $\delta=10.51$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $8.58-6.46$ (m, $14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.76,3.35$ (two s, $\left.6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right): \delta=196.20(\mathrm{t}, j=3.8$ $\mathrm{Hz}, \mathrm{ArCO}$), 177.92 (d, C-4), 165.31 (s, C-15), 162.53 (s, C-22), 150.42 (t, $j=3.6 \mathrm{~Hz}, \mathrm{C}-2$), 138.83 (s, C-8a), 127.70 (s, C-4a), 136.97-115.72 (m, aromatic C's), 115.46 (s, C-3), 57.30, 56.77 (two s, $2 \times \mathrm{OCH}_{3}$).

Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, $77.23 ; \mathrm{H}, 4.86 ; \mathrm{N}, 3.22$. Found: C, 76.98; H, 4.73; N, 3.20.

Acknowledgements.

The authors wish to express to their gratitude to Dr. Yunus Akçamur, Dr. •aban Patat and Arş. Gör. Dilek Ünal for helpful and encouraging discussions. This project was financially supported by the Science and Technical Research Council of turkey (TÜBITAK, project no:TBAG-AY/354(104T012)), Resarch Center of Erciyes Universty and ARÇELIK Company.

REFERENCES AND NOTES

* To whom correspondence schould be addressed: e-mail: emin@erciyes.edu.tr; tel: +90 35243749 29; fax: +90 3524374933.
[1a] G. Kollenz, W. Ott, E. Ziegler, K. Peters, H.G. von Schnering, H. Quast, Liebigs Ann. Chem., 1801 (1980); [b] G. Kollenz, W. Ott, E. Ziegler, K. Peters, H.G. Schnering, V. Formacek, H. Quast, Liebigs Ann. Chem., 1137 (1984).
[2a] K. Peters, G. Kollenz, Chem . Ber., 114, 1206 (1981); [b] G. Kollenz, G. Penn, Dollenz, Y. Akçamur, K. Peters, E-M. Peters, and H. G. von Schnering, Chem. Ber., 117, 1299 (1984); [c] H. A. El-Nabi, Abd, G. Kollenz, Monatsh Chem., 128, 381 (1997).
[3a] G. Kollenz, G. Penn, W. Ott, K. Peters, E-M. Peters and H.G. von Schnering, Chem. Ber., 117, 1310 (1984); [b] W. Heilmayer, C. O. Kappe, H. Sterk, G. Kollenz, K. Peters, E- M. Peters, H.G. von Schnering and L. Walz, Chem. Ber, 126, 2061 (1993).
[4] G. Kollenz, G. Penn, W. Ott, K. Peters, E-M. Peters and H.G. von Schnering, Heterocycles, 26, 625 (1987).
[5] E. Terpetsching, G. Penn, G. Kollenz, K. Peters, E-M. Peters and H.G. von Schnering, Tetrahedron, 47, 3045 (1991).
[6a] W. Ott, Synthesis, 478 (1976); [b] W. Ott, E. Terpetsching, H. Sterk and G. Kollenz, Synthesis, 176 (1987).
[7] G. Kollenz, E. Terpetsching, H. Sterk, K. Peters and E-M. Peters, Tetrahedron, 55, 2973 (1999).
[8a] G. Kollenz, H. Sterk and G. Hutter, J. Org. Chem., 56, 235 (1991); [b] W. Heilmayer, H. Sterk and G. Kollenz, Tetrahedron, 54, 8025 (1998).
[9a] W.M. F. Fabian, Acta Chim. Hung., 129, 347 (1992); [b] W. M. F. Fabian and G. Kollenz, J. Chem. Soc. Perkin Trans 2, 515 (1995); [c] W. M. F. Fabian and G. Kollenz, J. Org. Chem. 62, 8497 (1997); [d] K. Bowden, W. M. F. Fabian and G. Kollenz, J. Chem. Soc., Perkin Trans. 2, 547 (1997); [e] W. M. F. Fabian and G. Kollenz, J. Mol. Struct. (theochem), 187, 199 (1989).
[10] [http://www-ang.kfunigraz.ac.at/fabian/echet98/index.htm].
[11a] C. O. Kappe, G. Kollenz and C. Wentrup, J. Chem. Soc., Chem. Commun., 485 (1992); [b] C. O. Kappe, G. Kollenz, R. Leung-Toung and C. Wentrup, J. Chem. Soc., Chem. Commun., 487 (1992); [c] C. O. Kappe, G. Kollenz, R. K. P. Netsch, R. Leung-Toung and C. Wentrup, J. Chem. Soc., Chem. Commun., 488 (1992); [d] B. Fullon, H. A. A. El-Nabi, G. Kollenz and C. Wentrup, Tetrahedron Lett., 36, 6547 (1995); [e] B. E. Fullon and C. Wentrup, J. Org. Chem., 61, 1363 (1996); [f] V. V. R. Rao, B. E. Fulloon, P. V. Bernhardt, R. Koch and C. Wentrup, J. Org. Chem., 63, 5779 (1998); [g] R. V. V. Rao and C. Wentrup, J. Chem. Soc., Perkin Trans. 1, 2583 (1998); [h] C. Wentrup, V. V. Rammana Rao, W. Frank, B. E. Fulloon, D. W. j. Moloney and T. Mosandl, J. Org. Chem., 64, 3608 (1999).
[12] D. M. Birney, X. Xu, S. Ham, and X. Huang, J. Org. Chem., 62, 7114 (1997).
[13a] C. Wentrup, W. Heilmayer and G. Kollenz, Synthesis, 1219 (1994); [b] T. T. Tidwell, Ketenes. John Wiley and Sons. New York. p 665 (1995); [c] E. Sarıpınar, İ. Ö. İlhan and Y. Akcamur, Heterocycles, 57, 1445 (2002).
[14] J. J. P. Stewart, J. Comp. Chem., 10, 209 (1989).
[15] PC Spartan Pro, Wavefunction, Inc.; Irvine, California, (1999).
[16a] P. E. Wagenseller, D. M. Birney, and D. Roy, J. Org. Chem., 60, 2853 (1995); [b] D. M. Birney, J. Org. Chem., 61, 243 (1996); [c] S. Ham, and D. M. Birney, Tetrahedron Lett., 38, 5925 (1997); [d] W. M. F. Fabian, V. A. Bakulev, and C. O. Kappe, J. Org. Chem., 63, 5801 (1998); [e] D. M. Birney, X. Xu, and S. Ham, Angew. Chem. Int. Ed., 38, 189 (1999); [f] W. Shumway, S. Ham, J. Moer, B. R. Whittlesey, and D M. Birney, J. Org. Chem., 65, 7731 (2000); [g] D. M. Birney, J. Am. Chem. Soc., 122, 10917 (2000); [h] W.M. F. Fabian, C. O. Kappe, and V. A. Bakulev, J. Org. Chem., 65, 47 (2000); [i] W. W. Shumway, N. K. Dalley, and D. M. Birney, J. Org. Chem., 66, 5832 (2001); [j] C. Zhou, and D. M. Birney, J. Am. Chem. Soc., 124, 5231 (2002).
[17a] Birney, D. M.; S. Ham, G.R. Unruh, J. Am. Chem. Soc., 119, 4509 (1997); [b] E. Sarıpınar, Y. Güzel, Z. Önal, İ. Ö. İlhan and Y. Akçamur, J. Chem. Soc. Pak., 22, 308 (2000).
[18a] M. T. Nguyen, T. Ha and R. A. M. O'. Ferrall, J. Org, Chem.,

55, 3251 (1990); [b] R. L. Toung and C. Wentrup, Tetrahedron Lett., 48, 7641 (1992); [c] M. Birney, and P. E. Wagenseller, J. Am. Chem. Soc., 116, 6262 (1994); [d] D. M. Birney, J. Org. Chem., 59, 2557 (1994); [e] M. W. Wong and C. Wentrup, J. Org. Chem., 59, 5279 (1994); [f] R. Janoschek, W. M. F. Fabian, G. Kollenz and C. O. Kappe, J. Comput. Chem., 15, 132 (1994); [g] H. Bibas, M. W. Wong, and C. Wentrup, J. Am. Chem., Soc., 117, 9582 (1995); [h] C. O. Kappe, M. W. Wong, and C. Wentrup, J. Org. Chem., 60, 1686 (1995).
[19a] A. A. Al-Saadi and H. M. Badawi, J. Mol. Struct. (theochem), 582, 11 (2002); [b] H. M. Badawi, A.Al-Saadi and W. Förner, Spectrochimica Acta Part A. 58, 33 (2002).
[20] S. Ham, and D. M. Birney, J. Org. Chem., 61, 3962 (1996).
[21a] R. A. Olofson, D.S. Morrison and A. Banerji, J. Org. Chem., 49, 2653 (1984); [b] W.-J. Ding and D.-C. Fang, J. Mol. Struct. (theochem), 468, 119 (1999); [c] M. Alajarin, P. Sanchez-Andrada, F. P. Cossio, A. Arreta, and B. Leceai, J. Org. Chem., 66, 8470 (2001).

